Measurement of Exclusive $B \rightarrow Xu \nu$ at Belle
—Status & Prospect—

Toru Iijima
Nagoya University

March 16, 2005
|V_{ub}| from \(B \rightarrow \pi l\nu, \rho l\nu, \ldots\)

Major issue

= **Form Factor (FF)**

Uncertainties in

- Rate \(\leftrightarrow \) Ns (efficiency)
- \(|V_{ub}| \leftrightarrow\) Rate (normalization)

\[
\frac{d\Gamma(B^0 \rightarrow \pi^{-} l^+\nu)}{dq^2 dc\cos\theta_W} \propto |V_{ub}|^2 p_\pi^3 \sin^2 \theta_W f_1(q^2)^2
\]

Different theories give
Different q² distribution.

Experiment should provide q² distribution with minimum FF dependence in the rate.
Model Independent Approach

- FF by "unquenched" lattice QCD
 - FNAL
 - HPQCD
 - Talk by J. Shigemitsu

Limitations
- High $q^2 (> 16 \text{GeV}^2)$
- $B \to \pi$ only

Clean extraction of π in high q^2 region is important.

Dispersive Bound

Fukunaga/Onogi
(hep-lat/0408037)

Talk by B. Grinstein
(Friday, WG2S3)

Low-med. q^2 data are also useful to constrain more.
Experimental Strategy

- Background Continuum $b \to c \ell \nu$
- + cross feed

S/N
- good
- mod.
- poor

Eff.
- low
- middle
- high

$D^{(*)} \ell \nu$ tag
- Full recon.
- advanced ν recon.
- trad. ν recon.

Lum.

How well can we measure the q^2 dist. (for $\pi \ell \nu$)?

B$\to \pi \ell \nu / \rho \ell \nu$ (140 fb$^{-1}$)
ICHEP04 preliminary hep-ex/0408145

B$\to \omega \ell \nu$ (78 fb$^{-1}$)
PRL 93, 131803 (2004)
Br($\omega\ell\nu$) = $(1.3 \pm 0.4 \pm 0.2 \pm 0.3) \times 10^{-4}$

$+ \pi \ell \nu / \rho \ell \nu$ (preliminary)
Belle Status (ν-recon.)

- Preliminary results ($\pi l \nu / \rho l \nu$) in the past conf.
 → Trying to finalize with increased statistics.

"In-progress" analysis:
- Event $P_{\text{miss}}, E_{\text{miss}} \rightarrow P_{\nu}, E_{\nu}$
- $P_{\nu} > 1.3$ GeV/c
- Hermeticity cuts
 - $#\text{lepton}$
 - Total Net Charge
 - M_{miss}
- Background supression
 - $\cos\theta_{\text{BY}}$
 - $\cos\theta_{\text{thrust}}$
 - etc.

$$\Delta E = E^*_{\text{beam}} - (E^*_{\pi} + E^*_{l} + E^*_{\nu})$$

$$M_{bc} = \sqrt{E^*_{\text{beam}} - \tilde{P}_{\pi}^* + \tilde{P}_{l}^* + \tilde{P}_{\nu}^*}^2$$

p_{miss} resolution

$\sigma \sim 160$ MeV

- 85 MeV @ CLEO

- Poor hermeticity due to the asymmetric collision?
- Difference in track selection?

q^2 resolution

0.62 GeV2 (r.m.s.)

Improvement by adjusting P_{ν} w/ constraints

$\Delta E = 0$ GeV

$M_{bc} = 5.279$ GeV/c2
Status at 140 fb$^{-1}$ ($\pi^+ l \nu$)

- Eff. \sim3.6% (whole q2)
- S/N \sim 0.2
- For each 8 GeV2 q2 bin,
 - Ns \sim 500
 - Δ(stat.) $= 10$-18% (\approx CLEO'03)

ΔE distribution (w/ typical cut)

CLEO'03

- $q^2 > 16$ GeV2

High statistics available.

Systematic $\sim 13\%$

Extrapolation of CLEO'03

Belle Δ(stat) @ 140 fb$^{-1}$

- Preliminary plot
Belle D(*) \to \nu Tagging Analysis

- New method for clean extraction of $B \to \pi / \nu / \rho / \nu$:
 - Marginal Statistics, but
 - Eff. $\sim \times 4$ higher than hadronic decay tag.
 - Very high S/N (> 2)
 - The method originally developed for inclusive $X_u \to \nu$ measurement (A. Sugiyama's talk at Moriond'03).

- Preliminary Results at ICHEP04
 - Simultaneous extraction of $\pi^+ \to \nu$ and $\rho^+ \to \nu$ in 3 q^2 bin.
 - $P_L > 0.8$ GeV/c
 - Flat efficiency for the whole q^2
 - Minimum FF-dep. in the rate
 - $|V_{ub}|$ from high q^2 bin + unquenched Lattice QCD
Tag side reconstruction
\[B_{\text{tag}} \rightarrow D^{*+} \ell^- \bar{\nu} / D^+ \ell^- \bar{\nu} \]
\[\rightarrow D^0 \pi^+ / D^+ \pi^0 \]
\[\rightarrow 4 \text{ decay modes} \]
\[\rightarrow 7 \text{ decay modes} \]

Signal side reconstruction
\[B_{\text{sig}} \rightarrow X_u \ell^+ \nu \]
\[P_\ell > 0.8 \text{ GeV} / c \]
\[\rightarrow \pi^- \text{ or } \pi^- \pi^0 \]
\[N(\pi^-) = 1, N(\pi^0) \leq 1 \]

Kinematics of double semileptonic decay
Back-to-back correlation of the two B constrains their direction to the intersection of the 2 cones.
\[x_B = \pm \sqrt{1 - \frac{1}{\sin \theta_{12}} (\cos^2 \theta_{B_1} + \cos^2 \theta_{B_2} - 2 \cos \theta_{B_1} \cos \theta_{B_2} \cos \theta_{12})} \]

To have intersection, must be \[0 \leq x_B^2 \leq 1 \]

2 fold ambiguity \[\rightarrow q^2 \] calculated neglecting the B motion in \(\Upsilon(4S) \)
\[q^2 \text{ resolution} = 0.75 \text{ GeV}^2 (\sigma) \]
Calibration with $B_{sig} \rightarrow D^*/\nu$ Decays

- Validity of the method for double semileptonic decay detection has been tested with $B_{sig} \rightarrow D^* \ell^+ \overline{\nu} \rightarrow D^0 \pi^- \rightarrow K^+ \pi^-$

$M(K^+\pi^-\pi^-)$ on the signal side

X_B^2 distribution

$\frac{N_{obs}}{N_{expected}} = 0.89 \pm 0.08$ is used to correct the MC efficiency for π/ν and ρ/ν detection.

The method works!
Signal Extraction

- We extract $\pi / \nu / \rho / \nu$ signals simultaneously by fitting 2D (m_X, x_B^2) distribution.
 - Fitting components: π / ν, ρ / ν, other X_u / ν, BB background.
 - PDF’s are based on MC.
 - Constraint for extracted Br:
 \[Br(\pi / \nu) + Br(\rho / \nu) + Br(\text{other } X_u / \nu) = Br(X_u / \nu) \]

Fitting results for all q^2 data.

π / ν (72\pm11)

ρ / ν (59\pm15)

other X_u / ν

m_X GeV/c2

x_B^2 dist. for π mass region (I)

x_B^2 dist. for ρ mass region (II)

π / ν decays are cleanly extracted!
Extraction of q^2 Distribution

q^2 distribution is extracted by fitting the (m_X, x^2) distribution for three q^2 intervals.

m_X dist. for three q^2 intervals

Extracted q^2 dist.

$\pi^{-} l^{+} \nu$

$\Delta (\text{stat}) = 21\% \; 27\% \; 37\%$

FF-dep. Very small

$B_{total} = [1.76 \pm 0.28 \pm 0.20 \pm 0.03] \times 10^{-3}$

$\rho^{-} l^{+} \nu$

At the present accuracy, the obtained q^2 dist. does not exclude any tested models

FF-dep.

$B_{total} = [2.54 \pm 0.78 \pm 0.85 \pm 0.30] \times 10^{-3}$

Preliminary

140fb$^{-1}$
$|V_{ub}|$ from $B^0 \rightarrow \pi^- \, \ell^+ \, \nu$

$|V_{ub}|$ determined from $q^2 > 16 \text{GeV}^2$ ($B^0 \rightarrow \pi^- \, \ell^+ \, \nu$) with lattice QCD.

- w/ quenched LQCD [FNAL/JLQCD/APE/UKQCD]:
 \[|V_{ub}| = \sqrt{\frac{B(B \rightarrow \pi \ell \nu)}{\tilde{\Gamma}_{phy} \tau_B}} \]
 \[\tilde{\Gamma}_{thy} = 1.92^{+0.32}_{-0.12} \pm 0.47 \]
 \[(3.90 \pm 0.71 \pm 0.23^{+0.62}_{-0.48}) \times 10^{-3} \]

- w/ unquenched LQCD [FNAL/HPQCD]:
 Preliminary results reported at Lattice’04.
 \[\tilde{\Gamma}_{thy} = 1.96 \pm 0.51 \pm 0.39 \]
 \[(3.87 \pm 0.70 \pm 0.22^{+0.85}_{-0.51}) \times 10^{-3} \]
 \[\tilde{\Gamma}_{thy} = 1.31 \pm 0.33 \]
 \[(4.73 \pm 0.85 \pm 0.27^{+0.74}_{-0.50}) \times 10^{-3} \]

140 fb$^{-1}$, preliminary

4th error from $\tilde{\Gamma}_{thy}$

FF-dep. in Br is small for π / ν data
Systematic Uncertainty

Major contribution

- **D* lν calibration**
 - Statistics of detected D^*/ν (8.3%)
 - Error of $Br(B^0 \rightarrow D^*/\nu)$ (4.3%)

- **BB background shape**
 - Tested ΔB in MC by
 - Removing charged track by 1% (-4.2%)
 - Removing π^0 by 3% (-1.1%)
 - Replacing K^\pm with π^\pm by 2% (-0.5%)

Comments;

- D* calibration error improves as Lum.
- Some errors are doubly counted...
- If normalized to $Br(D^* l\nu)$, many errors cancel out

<table>
<thead>
<tr>
<th>Source</th>
<th>$\pi^-\rho^+\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking efficiency</td>
<td>1</td>
</tr>
<tr>
<td>π^0 reconstruction</td>
<td>-</td>
</tr>
<tr>
<td>Lepton identification</td>
<td>2.1</td>
</tr>
<tr>
<td>Kaon identification</td>
<td>2</td>
</tr>
<tr>
<td>$D^* l\nu$ calibration</td>
<td>9.8</td>
</tr>
<tr>
<td>$Br(X_{a l\nu})$ in the fitting</td>
<td>0.2</td>
</tr>
<tr>
<td>$B\bar{B}$ background shape</td>
<td>4.4</td>
</tr>
<tr>
<td>$N_{B\bar{B}}$</td>
<td>0.5</td>
</tr>
<tr>
<td>f_+/f_0</td>
<td>2.4</td>
</tr>
<tr>
<td>χ_d</td>
<td>1.0</td>
</tr>
<tr>
<td>total</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Prospect

- Stat. error: extrapolate the present error $1/\sqrt{L/L_0}$.
- Syst. error:
 - ν-recon: error quoted by CLEO’03 (~Belle prelim.)
 - $D^{(*)}\nu$ tag: 5% + (stat. in $D^*\nu$ calibration).

![Graph showing relative error as a function of L_{int} for different q^2 regions.]

<table>
<thead>
<tr>
<th></th>
<th>Whole q^2</th>
<th>$q^2 > 16$GeV2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta_{\text{stat.}}$</td>
<td>Δ_{sys}</td>
</tr>
<tr>
<td>ν-recon</td>
<td>$\sim 4% \times \sqrt{N_{\text{bin}}}$</td>
<td>$\sim 8%$</td>
</tr>
<tr>
<td>$D^{(*)}\nu$ tag</td>
<td>$\sim 8% \times \sqrt{N_{\text{bin}}}$</td>
<td>$\sim 7%$</td>
</tr>
</tbody>
</table>

- Also, we are trying to measure all π/ρ charge states.
Two analyses in progress at Belle; ν-recon & $D^(*) \rightarrow \nu$ tag.

$D^(*) \rightarrow \nu$ tag. provides clean extraction of $B \rightarrow X_u \rightarrow \nu$.

$B \rightarrow \pi \rightarrow \nu$ at 500 fb$^{-1}$
- Both will give precision ~ 15-$20\% / 8 \text{ GeV}^2 q^2$ bin
- ν-recon: $\Delta \text{stat} < \Delta \text{sys}$ \leftrightarrow $D^(*)\nu$ tag: $\Delta \text{stat} > \Delta \text{sys}$
- Results from the two methods may be combined (statistical overlap is small).

Beyond this, the $D^(*) \rightarrow \nu$ tag will be the major stream.
- Achievable precision $\rightarrow 5\%$ (in total)

How good is the hadronic decay tag? \rightarrow J.Dingfelder
How good is the theory? \rightarrow J.Shigemitsu and others.
Backup Slides
CLEO'03 $\pi l \nu$ (as a reference)

- **Analysis feature**
 - Higher S/N w/ tight ν recon.
 - Wide P_\perp range \rightarrow FF-indep. Br
 - $P_\perp > 1.0(1.5) \text{GeV/c}$ for $\pi l \nu$ ($\rho l \nu$)
 - Simultaneous extraction of π and ρ
 - Differential rate in 3 q^2 bins.
 - $|V_{ub}|$ by QCD based FF.
 - LQCD(LCSR) for $q^2 > 16 \text{GeV}^2$ ($< 16 \text{GeV}^2$)

| $q^2 (\text{GeV}^2)$ | < 8 | 8-16 | > 16
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N_s</td>
<td>~20</td>
<td>~60</td>
<td>~20</td>
</tr>
<tr>
<td>Δ_{sta}</td>
<td>26%</td>
<td>17%</td>
<td>36%</td>
</tr>
<tr>
<td>Δ_{sys}</td>
<td>12%</td>
<td>11%</td>
<td>16%</td>
</tr>
</tbody>
</table>

N_s: estimated by quoted eff. and Br.

- Efficiency
 - Low continuum bkg by tagging
 - Low P_{l} threshold ($P_{l} > 0.8\text{GeV}/c$)
 - Very flat q^{2}-dep.
 - Diagonal part of the efficiency matrix; q^{2} gen \rightarrow q^{2} obs.

- q^{2} resolution
 - The method has 2-fold ambiguity (in the B direction).
 - q^{2} is calculated neglecting the B motion.

How good is it with hadronic decay tag?