Unfolding the M_X Spectrum in $B \rightarrow X_u \ell \nu$

- Measure M_X on the recoil of fully reconstructed hadronic B decays
- Resolution about 300 MeV
- 244 signal events in full M_X range (80 fb^{-1})
- First attempt to unfold spectrum for experimental efficiencies and resolution
- Spectrum and moments sensitive to m_b and nonperturbative parameters

ICHEP04
[hep-ex/0408068]

Kerstin Tackmann (UC Berkeley, LBNL)
Future Perspective – M_X^2 Moments

★ OPE predictions now with M_X and E_ℓ cuts (P. Gambino, G. Ossola, work in progress)

<table>
<thead>
<tr>
<th></th>
<th>220 fb^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(M_1)$ in %</td>
<td>19 → 11</td>
</tr>
<tr>
<td>$\sigma(M'_2)$ in %</td>
<td>53 → 18</td>
</tr>
<tr>
<td>$\sigma(M'_3)$ in %</td>
<td>136 → 57</td>
</tr>
</tbody>
</table>

★ Scale statistical uncertainties ($80 \rightarrow 220$) fb^{-1}

★ No M_X^2 cut $\rightarrow M_X^2 < 5.6 \text{ GeV}^2$

★ M_X^2 cut removes experimentally most poorly known region

Experimental uncertainties

<table>
<thead>
<tr>
<th></th>
<th>220 fb^{-1}</th>
<th>No M_X^2 cut</th>
<th>$M_X^2 < 5.6 \text{ GeV}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_b/GeV</td>
<td>±0.18</td>
<td>±0.06</td>
<td></td>
</tr>
<tr>
<td>μ_π^2/GeV^2</td>
<td>±0.6</td>
<td>±0.1</td>
<td></td>
</tr>
<tr>
<td>ρ_D/GeV^3</td>
<td>±0.5</td>
<td>±0.1</td>
<td></td>
</tr>
</tbody>
</table>

★ Central values m_b, μ_π^2 from $BABAR$ HQE fits in $B \rightarrow X_c\ell\nu$
How Do We Use This Best?

★ Anticipated accuracy interesting for constraining m_b
 ★ Expect results by summer 2005
 ★ Expect 450 fb$^{-1}$ by summer 2006

★ How are the moments best used in testing underlying OPE assumptions - also in combination with $B \rightarrow X_c \ell \nu$?
 ★ If test successful - how are they best combined with corresponding information from $B \rightarrow X_c \ell \nu$?

★ How do we make best use of unfolded $M_X^{(2)}$ spectrum for better understanding and improved accuracy for extraction of $|V_{ub}|$?

★ Would it be useful to extract moments separately for B^+ and B^0?