V_{cb} (and more) from $B \to D^{(*)} l\nu$ decays

Outlook:

- Role of $B \to D^{(*)} l\nu$ decays for theory validation
- Measurement of V_{cb}: status
- Measurement of V_{cb}: perspectives
- Conclusions

Belle
$B^0 \to D^+ l\nu$

DELPHI
$B^0 \to D^{*+} l\nu$
The Challenge

Measurement of inclusive $b \rightarrow clv$ decays + OPE :

$|V_{cb}| = (41.9 \pm 0.6) \times 10^{-3}$

- < 2% already achieved
- ~ 1% within reach

Franco Simonetto INFN & Universita' di Padova
Quests. for Exclusive Decays

Can achieve comparable precision?

- theoretical limits
- experimental limits

Can probe OPE predictions? (!)

and strengthen belief in OPE

("The Devil in the detail", Grinstein, Daegu, Oct 2004)

("The fly in the ointment" Bigi, SLAC. Dec 2004)
Probe OPE in $B \rightarrow D(*)l\nu$

Shape of Form Factors:

- the slope
- the curvature

Integrated Rates

- Saturation: $b \rightarrow cl\nu = B \rightarrow (D + D^* + D^{**}) l\nu$
- D** states: "3/2 > 1/2 Puzzle"
Partial Rates

\[
\frac{d\Gamma(B \to D\ell\bar{\nu})}{dw} = \frac{G_F^2 m_B^5}{48\pi^3} r^3 (1 + r)^2 (w^2 - 1)^{3/2} |V_{cb}|^2 \mathcal{F}^2(w)
\]

\[
\frac{d\Gamma(B \to D^*\ell\bar{\nu})}{dw} = \frac{G_F^2 m_B^5}{48\pi^3} r^3 (1 - r^*)^2 \sqrt{w^2 - 1} (w + 1)^2 \\
\times \left[1 + \frac{4w}{1+w} \frac{1 - 2wr^* + r^2}{(1 - r^*)^2} \right] |V_{cb}|^2 \mathcal{F}^*^2(w)
\]

\[
w = v_B \cdot v_D = \frac{M_B^2 + M_D^2 - q^2}{2 M_B M_D}
\]
Form Factors

Consider the following expansions: (hep-ph /0111392)

\[
\mathcal{F}(w) = \mathcal{F}(1) \left[1 - \rho_{\mathcal{F}}^2 (w - 1) + c_{\mathcal{F}} (w - 1)^2 + \cdots \right] \\
\mathcal{F}_*(w) = \mathcal{F}_*(1) \left[1 - \rho_{\mathcal{F}_*}^2 (w - 1) + c_{\mathcal{F}_*} (w - 1)^2 + \cdots \right] \\
h_{A_1}(w) = h_{A_1}(1) \cdot f(w | \rho_{A_1}^2, \ldots)
\]

QCD provides bounds on normalization and shape parameters

Most of these can be experimentally tested
QCD Bounds

Normalization (LQCD, next talk):

\[F(1) = 1.04 \pm 0.01 \pm 0.01 \]

\[h_A(1) \approx F_*(1) = 0.92 \pm 0.03 \]

Curvature:

expect \(c > 0 \)

\[c_{F*} \approx 0.66 \rho_{F*}^2 - 0.11 \]

similar bounds for \(c_F, c_{A1} \)

Slope:

\[\frac{3}{4} < \rho_{F*}^2 < 1 \]

\[\rho_F^2 - \rho_{F*}^2 \approx 0.19 \]

\[\rho_{A1}^2 - \rho_{F*}^2 \approx 0.17, \rho_{A1}^2 \approx \rho_F^2 \]

Fit \(d\Gamma/dw \), determine \(F_*(1)V_{cb}, \rho^2 \) using bounds on \(c \)

Byproduct:

test expectations for shape parameters

Phys.Rev. D56,6895,(97)
Nucl.Phys. B530,153 (98)
hep-ph/0111392
Status (before ICHEP04)

- Linear fits as good as quadratic
- D* slope parameters larger than expected:
 \[\rho^2_{F} - \rho^2_{A1} \approx -0.20 \text{ (Belle)} \]
 \[\rho^2_{F} - \rho^2_{A1} \approx -0.37 \text{ (CLEO)} \]
 consistent with 0 due to large errors

<table>
<thead>
<tr>
<th>Fitted slope parameter</th>
<th>CLEO</th>
<th>BELLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \rightarrow D^*\ell\bar{\nu}), unitarity constrained fit to (\rho^2_{A1})</td>
<td>(1.67 \pm 0.11 \pm 0.22) [10]</td>
<td>(1.35 \pm 0.17 \pm 0.19) [11]</td>
</tr>
<tr>
<td>(B \rightarrow D^\ell\bar{\nu}), linear fit to (\rho^2_{F^})</td>
<td>(0.98 \pm 0.09 \pm 0.07) [12]</td>
<td>(0.89 \pm 0.09 \pm 0.05) [13]</td>
</tr>
<tr>
<td>(B \rightarrow D\ell\bar{\nu}), unitarity constrained fit to (\rho^2_{F})</td>
<td>(1.30 \pm 0.27 \pm 0.14) [14]</td>
<td>(1.16 \pm 0.25 \pm 0.15) [15]</td>
</tr>
<tr>
<td>(B \rightarrow D\ell\bar{\nu}), linear fit to (\rho^2_{F})</td>
<td>(0.76 \pm 0.16 \pm 0.08) [14]</td>
<td>(0.69 \pm 0.14 \pm 0.09) [15]</td>
</tr>
</tbody>
</table>
ICHEP04 Update

- **BABAR**: \(B^0 \rightarrow D^* l^+ \nu \) with \(\sim 85 \text{ M BB} \) (\(\sim 60 \text{ K signal events} \))
- Get all prominent bckg (> few %) from data in each \(w \) bin
- Form Factor:
 - \(h_A(w) \): fit \(h_A(1)V_{cb} \) and \(\rho^2_{A1} \), +QCD bounds
 - \(F_*(w) \): 3rd order expansion, fit \(F_*(1)V_{cb} \), \(\rho^2_{F*} \) and \(c_{F*} \), without constraints

Figure:

- Signal + BG
- Continuum D*1
- Fake leptons
- Combinatoric

Graph:

- \(\Delta M \text{ (MeV/c}^2) \)
- \(0 \) to \(30 \text{ Events/10}^7 / 0.5 \text{ MeV/c}^2 \)
- \(0 \) to \(30 \)
- \(140 \) to \(165 \)

Legend:

- **Total**: 7868.00, 88.70 / 7779.68
- **D*enu Signal**: 2800.41, 78.39 %
- **D*enu Signal**: 621.13, 7.98 %
- **Real D*enu**: 18.23, 6.24 %
- **Uncorrelated D*enu**: 432.82, 5.56 %
- **Correlated D*enu**: 104.58, 1.39 %
- **Continuum D*enu**: 178.55, 2.30 %
- **Fake D*enu**: 547.51, 7.04 %

Franco Simonetto INFN & Universita' di Padova
$B^0 \rightarrow D^* l^+ \nu$ BABAR Results

| $A_1(1)|V_{cb}| \times 10^3$ | ρ^2 | c | χ^2/ndf |
|-----------------------------|---------|-----|------------------|
| \mathcal{F} | 35.0 ± 0.9 | 0.95 ± 0.09 | 0.54 ± 0.17 | 67/57 |
| A_1 | 35.5 ± 0.8 | 1.29 ± 0.03 | - | 69/58 |

- Linear FF excluded @ 3 σ
- $\rho^2_{F^*}$ and c_{F^*} consistent with U-bounds
- $\rho^2_{F^*}$ within prediction
- $\rho^2_{A1} - \rho^2_{F^*} \approx 0.3$
- $\rho^2_{F^*}(\text{BABAR}) < \rho^2_{F}(\text{CLEO,Belle})$

\[\text{need BABAR} \ B \rightarrow D l \nu \text{ for self-consistent, precise test} \]

Franco Simonetto INFN & Universita' di Padova

CKM2005 UCSD
Present World Average

- **HFAG average:**

 \[h_A \left(1 \right) \left| V_{cb} \right| = \left(37.7 \pm 0.9 \right) \times 10^{-3} \]

 \[\left| V_{cb} \right| = \left(41.4 \pm 1.0 \pm 1.8 \right) \times 10^{-3} \]

 2.4% exp., 4% th. error

 ☺ Consistent with inclusive

 ☺ Exp. error soon decrease

 ❗ What about th. error?

 next slide

- Loose internal consistency: \(\chi^2/ndof = 27/14 \)

- Consistency not bound to improve in the future

- Scale exp. error according to PDG recipe?

 Franco Simonetto INFN & Universita' di Padova
Error Budget

- Even without \mathcal{L} increase many correlated errors will soon decrease due to ongoing measurements of:
 - R_1, R_2 (BABAR, next slide)
 - f_{00} (BABAR, ICHEP04)
 - $\tau(B)$ (BB & Belle, ICHEP04)
 - $D B.R.$ (CLEO-C)

- Other errors (tracking, PID) not expected to improve with \mathcal{L}, but are reduced in the world average

| Source of Uncertainty | $\delta(A_1 | V_{cb})$ (%) | $\delta \rho_{A_1}^{\rho}$ | δB (%) |
|-----------------------|-----------------------------|-----------------------------|----------------|
| Data and MC statistics| 0.7 | 0.03 | 1.4 |
| $B(D^0 \rightarrow K^- \pi^+)$ | 0.4 | 1.1 | - | 2.2 0.8 |
| $B(D^0 \rightarrow K^- \pi^+ \pi^- \pi^+)$ | 0.4 | - | 0.8 |
| $B(D^0 \rightarrow K^- \pi^+ \pi^0)$ | 0.5 | - | 1.0 |
| Particles identification | 1.1 | - | 2.2 |
| Tracking & π^0 reconstr. | 1.3 | - | 2.6 |
| Partial Sum | 2.2 | 0.03 | 4.5 |

- B^0 lifetime | 0.3 | 0.5 | - | - |
- Number of $B \overline{B}$ | 0.6 | - | 1.2 |
- $B(D^{*+} \rightarrow D^0 \pi^+)$ | 0.4 | - | 0.7 |
- $B(\Upsilon(4S) \rightarrow B^0 \overline{B}^0)$ | 0.8 | 1.2 | - | 2.5 1.5 |
- $D^{*+} \ell^- $ vertex efficiency | 0.5 | - | 1.0 |
- π^0 efficiency | 1.1 | 0.01 | 1.9 |
- $D^{*} \pi \ell \nu$ sample composition | 1.8 | 0.06 | 2.0 |
- B momentum | 0.3 | - | 0.7 |
- Radiative corrections | 0.2 | 0.01 | 0.4 |
- $\cos \theta_{B^0, D^{*+}} & \tilde{w}$ fit method | 0.8 | 0.02 | 1.6 |
- $R_1(1)$ and $R_2(1)$ | 0.6 | $^{+2.9}_{-2.6}$ | 0.05 0.26 | $^{+3.9}_{-3.3}$ 0.7 |

Total Error

My guess for BABAR $\pm 3% \pm 0.09 \pm 6%$

My guess for w.a.: $\sigma(h_A(1) V_{cb}) \sim 1.5%$

Franco Simonetto INFN & Universita' di Padova
R_1, R_2

- Ratio of Axial to Axial and Vector to Axial FF
- Affect V_{cb}:
 - correlation with ρ^2
 - acceptance correction
- Measured with a fit to helicity-related quantities
- BABAR (ICHEP04), still based on linear shape, improves by ~ 5 times wrt CLEO (PRL76,3898,1996)

$$ R_1 \hspace{1cm} R_2 $$

BABAR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33 ± 0.06</td>
<td>0.92 ± 0.04</td>
</tr>
</tbody>
</table>

CLEO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18 ± 0.30</td>
<td>0.71 ± 0.22</td>
</tr>
</tbody>
</table>

error : stat. \oplus syst.

Publish soon with HQET inspired FF

Franco Simonetto INFN & Universita' di Padova
Status & Perspectives

From D* decays:

\[\sigma^{\text{exp}} \left(h_A(1) \vert V_{cb} \right) \sim 2\% \]

\[h_A(1) = 0.92 \pm 0.04 \ (LQCD) \]

\[\sigma(\vert V_{cb} \vert) = 2\% \text{ (exp.) } \oplus 4\% \text{ (th.)} \]

Ways to proceed:

- theory: improve computation of \(h_A(1) \)
- recall \(B \rightarrow Dl^+\nu \) case:
 \[\mathcal{F}(1) = 1.074 \pm 0.018 \pm 0.015, \ 1\% \text{ in few years} \]
- experiments:

Reconsider long-time-neglected \(B \rightarrow Dl^+\nu \) decays

Franco Simonetto INFN & Universita' di Padova

next talk?
$B \rightarrow D l^+ \nu$: status

- HFAG average with new LQCD results:

$$F(1) \mid V_{cb} \mid = (42.0 \pm 3.7) \times 10^{-3}$$
$$\mid V_{cb} \mid = (39.1 \pm 3.6 \pm 1.3) \times 10^{-3}$$

9% exp., 3.5% th. error

- ☑ Consistent with D^*, inclusive

- ☺ Very good internal consistency

- 😞 Large experimental error!

- 🗓 Bound to improve?

Franco Simonetto INFN & Universita' di Padova
$B \to Dl^+\nu$: exp.overview

- **Background issues:**
 - downfeed from $D^*(*)$
 - uncorrelated lD
 - combinatoric

- **Reconstruct ν from E_{miss}, P_{miss}, compute B mass**
 - large detector-related errors
 - efficiency depends also on decay properties of the other B (K_L, additional $\nu, ...$)

Not needed in $D^*l\nu$ analysis

Franco Simonetto INFN & Universita' di Padova
Error Budget

- Large systematic error (10%) due to ν reconstruction
- Unlikely to reduce below 5% (see also new $|V_{ub}|$ meas.)

| Source of uncertainty | $\Delta |V_{ub}| F_D(1)$ (%) | Δr_D^2 (%) | $\Delta \Gamma$ (%) |
|---|------------------------|--------------------|---------------------|
| ν reconstruction simulation | 10.6 | 9.7 | 15.5 |
| Correlated background normalization | 2.4 | 4.4 | 1.9 |
| D^* form factor | 1.5 | 2.8 | 0.9 |
| Other background normalization | 0.6 | 1.8 | 0.4 |
| D^+ vertexing efficiency | 4.7 | 5.8 | 5.3 |
| Lepton finding efficiency | 1.5 | - | 3.0 |
| N_{BB} | 0.5 | - | 1.0 |
| $Br(D^+ \rightarrow K^+\pi^+\pi^+)$ | 3.3 | - | 6.7 |
| τ_{CP} | 1.0 | - | 2.1 |
| **Total** | **12.5** | **12.6** | **18.2** |

- Need other methods. Consider tagged samples!
Tagged samples

- Fully reconstruct the B to several hadronic modes (~ 2500/1500 B⁺/B⁰ fb⁻¹) (tag side)
- Use the remnant (recoil) for the measurement

BABAR

generic events

Belle, $p_{lep} > 1$ GeV
Tagged $B \rightarrow Dl^+\nu$ samples: pros

- fully reconstructed hadron plus flavor constraints reduce background at start
- precise ν reconstruction using constraints from tag-B enhances bckg rejection and improves determination of w

Background not an issue here!

Franco Simonetto INFN & Universita' di Padova
Tagged $B \rightarrow Dl^+\nu$ samples: **cons**

- No free lunch!
- Low event yield:
 - $\sim 200 \, D(e+\mu)\nu / 100 \, \text{fb}^{-1} / \exp$
 - ~ 2000 events (BABAR+Belle) by summer 2006
 - ~ 5000 by end 2008

- Already on tape ~ as many events as in published results
Tagged $B \to D l^+ \nu$ samples: expectation

- Rescale untagged Belle results, accounting for improved S/N
- Ignore bonus from improved ω reconstruction

| year | # evts | $\sigma |V_{cb}|$ (%) | σ(BR) % |
|------|--------|----------------|----------------|
| 2006 | 2000 | 3.5 | 2.2 |
| 2008 | 5000 | 2.2 | 1.5 |

- Assuming similar systematic error as for D^*, would expect

$\sigma^{(exp.)} V_{cb} \sim 2.5\%$

by end of 2008

- Could be improved with theory bounds on ρ_F^2
Total Rates & D**

- BR \((B^0 \rightarrow lvX) = (10.5 \pm 0.8)\% \)
- BR \((B^0 \rightarrow lvD) = (2.1 \pm 0.2)\% \)
- BR \((B^0 \rightarrow lvD^*) = (5.4 \pm 0.2)\% \)

Other semileptonic decays (excited D states) must account for ~ 3% of the total B decay rate.

- BR \((B \rightarrow lvD^{**}) = (2.7 \pm 0.7)\% \) \(\text{ARGUS, missing mass} \)
- BR \((B \rightarrow lv(D\pi+D^*\pi) = (2.6 \pm 0.5)\% \) \(\text{ALEPH, DELPHI topological analysis} \)

Unitarity of Quantum Mechanics is preserved! Is OPE as well?
The $\frac{1}{2} > \frac{3}{2}$ Puzzle

- $\text{BR}(B \rightarrow l\nu D^*_1) = (0.7 \pm 0.2 \%)$
- $\text{BR}(B \rightarrow l\nu D^*_2) < 0.5\%$
- $B \rightarrow l\nu(D^*_2 + D^*_1)/B \rightarrow l\nu D^{**} < 30\%$

Contradicts OPE + sum rules predicting narrow states to prevail!

Diagrams show experiments do not distinguish broad states from “open” $B \rightarrow l\nu DX$ decays

“Old” results: B-factories?

D0 2005 (prel.):
- narrow states account for ~ 50%
- $B \rightarrow l\nu D^* X$ decays!
Conclusions

- QCD+OPE is in good shape as for exclusive B decays

- Error on $|V_{cb}| (~4\%)$ is dominated now by theory:
 - deal with poor consistency of experimental results!

- Without progress in theory, future is in tagged measurements of $B \rightarrow D\ell^+\nu$ decays

- Combining D (3% , exp. dominated) and D* (4% th. dominated) could go down to $\sim 2.5\%$ (my estimate)

 \[
 \text{do better only if theory improves on } F^*
 \]

many thanks to Kolja for useful suggestions

Franco Simonetto INFN & Universita' di Padova
BACKUP material
Definition of D^* \textit{ff}

\[F(w)^2(1+4\frac{w}{w+1}\frac{1-2wr+r^2}{(1-r)^2}) = \]

\[= h_{AI}(w)^2\left[2\frac{1-2wr+r^2}{(1-r)^2}\right](1+R_1(w)^2\frac{w-1}{w+1})+\left[1+(1-R_2(w))\frac{w-1}{w_1}\right]^2 \]

\[h_{AI}(w)=h_{AI}(1)(1-8\rho_{AI}^2+(53\rho_{AI}^2-15)z^2-(231\rho_{AI}^2-91)z^2) \]

\[z = \frac{(\sqrt{(w-1)}-\sqrt{2})}{(\sqrt{(w+1)}+\sqrt{2})} \]