Charmless twobody B decays
Branching fraction and direct CP measurements at the B Factories

Markus Cristinziani
Stanford Linear Accelerator Center

Workshop on the Unitarity Triangle
March 2005
Outline

1. Introduction
2. Two charged particles
3. One charged particle
4. No charged particle
5. Conclusion
Outline

1. Introduction
2. Two charged particles
3. One charged particle
4. No charged particle
5. Conclusion
Motivation

- several interfering topologies
- amplitudes related by isospin and SU(3)
- sensitivity to weak phases:
 \(\alpha \) from \(\pi \pi \)
 \(\gamma \) from \(K \pi \)

Amplitude computations:
- QCD FA
- pQCD
- SCET
- Charming Penguins
Overview of results

Babar

- six analysis groups cover B and A measurements at the same time
- all analysis except $B_{h^+h^-}$ updated for ICHEP with full dataset, 227 million $B\bar{B}$ pairs

Belle

- different responsibilities for B and A
- B generally updated with 85 million $B\bar{B}$ pairs
- A generally updated with 275 million $B\bar{B}$ pairs
- exception: $B_{\pi^0\pi^0}$
Measurement strategy

Want to measure branching fractions B in rare decays $\mathcal{O}(10^{-6} - 10^{-5})$ and asymmetries A

- Identify contributing components:
 → Signal, B background, continuum

- Identify discriminating variables:
 → m_{ES}, ΔE, F, θ_C, ...

- Model distributions from
 → control sample, off-resonance, sideband, simulation

- (Un)binned maximum likelihood fit to extract yields

$$
L = \exp \left(- \sum_i n_i \right) \prod_{j=1}^{N} \left[\sum_i n_i P_i(\vec{x}_j; \vec{\alpha}_i) \right]
$$

i components, j events, $\vec{\alpha}_i$ parameters of the fit
Continuum suppression at Babar

Event shape variables to distinguish spherical and jet-like topology: cut on \(\cos \theta_S \)

With \(\theta_i \equiv \angle(B, (p_{i}^*)) \) use “Fisher”

\[
F = a_0 \sum_i p_{i}^* + a_2 \sum_i p_{i}^* \cos^2 \theta_i
\]

Alternatively use Neural Network, e.g. with tagging information
Continuum suppression at Belle

- Fox-Wolfram moments: \[H_l = \sum_{i,j} \frac{\vec{p}_i \cdot \vec{p}_j}{s} P_l(\cos \theta_{i,j}) \]

- Super FW: \[\sum_{l=2,4} \alpha_l \frac{h_{so}[l]}{h_{so}[0]} + \sum_{l=1}^{4} \beta_l \frac{h_{oo}[l]}{h_{oo}[0]} \]

- Modified SFW: \[\sum_{l=0}^{4} \alpha_{cl} h_c so[l] + \sum_{l=0,2,4} \left(\alpha_{nl} h_n so[l] + \alpha_{ml} h_m so[l] \right) + \sum_{l=0}^{4} \beta_l h_{oo}[l] \]

- MSFW combined with \(\sum |p_T| \) into a \(F \) discriminant
- MSFW and \(\cos \theta_B \) combined into a likelihood function
- b-flavor tagging confidence \(r \) combined into multi-dimensional likelihood-ratio
- make an optimized CUT → does not enter the ML fit
Common systematic uncertainties

- Estimate of π^0 and tracking efficiency (using control samples)
- Energy resolution affects the ΔE signal PDF
- Higher multiplicity B background
- Fixing PDF parameters for signal from Monte Carlo
This talk is not full of angles ($\alpha \leftrightarrow \phi_2$, etc.) ...
This talk is not full of angles ($\alpha \leftrightarrow \phi_2$, etc.) ...

but I use the following:

- $^{6}\mathcal{B}_{\pi\pi^0}^{227} = 5.8 \pm 0.6 \pm 0.4$ is the CP averaged branching fraction $\times 10^6$
 measured with 227 million $B\bar{B}$ pairs by Babar

- $^{2}\mathcal{A}_{\pi\pi^0}^{275} = -2 \pm 5 \pm 2$ is the charge asymmetry or direct CP in percent
 measured with 275 million $B\bar{B}$ pairs by Belle
Outline

1. Introduction

2. Two charged particles

3. One charged particle

4. No charged particle

5. Conclusion
joined fit for three modes ($\pi^+\pi^-$, $K^+\pi^-$, K^+K^-)

assign pion mass to all charged tracks

separate kaons and pions with

- PID Cherenkov angle in the DIRC, used in the ML fit
- KID N. of photoelectrons in the ACC and dE/dx in CDC, \mathcal{L} ratio cut

B backgrounds neglected in Babar and small in Belle

cross-feed between the modes
Interest foremost in the time-dependent asymmetry measurement (see talk by Hirokazu Ishino) to extract α

- branching fraction measurements are currently systematics limited and not updated to the full dataset
- similar selection efficiencies (38% vs. 35%)

$$\mathcal{B}_{\pi^+\pi^-}^{88} = 4.7 \pm 0.6 \pm 0.2$$

$$\mathcal{B}_{\pi^+\pi^-}^{85} = 4.4 \pm 0.6 \pm 0.3$$

$$\mathcal{B}_{\pi^+\pi^-} = 4.6 \pm 0.4$$
K/π separation: Cherenkov angle θ_C

- New technique, imaging reflected light
- θ_C distribution is parameterized and used in the fit with charged tracks
- Critical for disentangling π^\pm and K^\pm
- \Rightarrow direct CP in $B^0 \to K^+\pi^-$
Direct CP violation in $B^0 \to K^+\pi^-$

$^6B_{K\pi}^{88} = 17.9 \pm 0.9 \pm 0.7$

Summer'04 : first observation of direct CP violation (by both exp.!) $n_{K\pi} = 1606 \pm 51$

$B^0 \to K^+\pi^-(910)$ background subtracted

$\bar{B}^0 \to K^-\pi^+(696)$ signal enhanced

$2A_{K\pi}^{227} = -13.3 \pm 3.0 \pm 0.9$

$2A_{K\pi}^{275} = -10.1 \pm 2.5 \pm 0.5$

$\implies 2A_{K\pi} = -10.9 \pm 1.9$
$A_{K\pi}$ Cross checks and systematics

- Toy Monte Carlo shows no intrinsic bias
- Consistent in different Kaon momentum ranges
- No K/π or $+/−$ efficiency asymmetry
- Consistent in different run periods

<table>
<thead>
<tr>
<th>Sample</th>
<th>$N_{B\bar{B}}$</th>
<th>$n_{K\pi}$</th>
<th>$A_{K\pi}$</th>
<th>$A^{b}_{K\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999–2001</td>
<td>21.1</td>
<td>142 ± 15</td>
<td>-0.240 ± 0.102</td>
<td>0.006 ± 0.026</td>
</tr>
<tr>
<td>2002</td>
<td>66.4</td>
<td>479 ± 27</td>
<td>-0.102 ± 0.055</td>
<td>-0.008 ± 0.015</td>
</tr>
<tr>
<td>2003</td>
<td>34.1</td>
<td>241 ± 19</td>
<td>-0.109 ± 0.079</td>
<td>0.007 ± 0.021</td>
</tr>
<tr>
<td>2004</td>
<td>104.9</td>
<td>743 ± 33</td>
<td>-0.142 ± 0.044</td>
<td>0.004 ± 0.012</td>
</tr>
</tbody>
</table>

- Standard Model does not predict $A_{K\pi} = 0$

Dominant source of systematic uncertainty:
background asymmetry $A^{bckgnd}_{K\pi} = 0.001 \pm 0.008$
No evidence for the decay $B^0 \rightarrow K^+ K^-$

- expected to be suppressed
- selection efficiency differs, 36% and 20%

Latest CP fit yield: 3 ± 12 in 68k events

$^6 B_{KK}^{88} < 0.6$ \hspace{2cm} $^6 B_{KK}^{85} < 0.7$
Radiative corrections

- see also talks by L. Cavoto and E. Baracchini at the RadCor Workshop on Monday

- Branching fraction measurements $h^+ h^-$ are systematics limited

- Not updated to the full dataset

- Main problem: efficiency estimate with correct description of final state radiation

- Inclusion of out-of-the-box PHOTOS might not be ideal (e.g. pions and kaons are treated the same)
Outline

1. Introduction
2. Two charged particles
3. One charged particle
4. No charged particle
5. Conclusion
$B^+ \rightarrow h^+\pi^0$

$B^+ \rightarrow \pi^+\pi^0$ and $B^+ \rightarrow K^+\pi^0$ signal

- Combined fit to extract two signal components
- appear separated in ΔE distribution
- tight cut to suppress B background
- peak position used to calibrate energy scale for $\pi^0\pi^0$
$B^+ \rightarrow h^+\pi^0$

$B^+ \rightarrow \pi^+\pi^0$ and $B^+ \rightarrow K^+\pi^0$ signal

Continuum background
\[B^+ \rightarrow h^+ \pi^0 \]

\[B^+ \rightarrow \pi^+ \pi^0 \] and \[B^+ \rightarrow K^+ \pi^0 \] signal

\[\mathcal{B}_{\pi\pi^0}^{227} = 5.8 \pm 0.6 \pm 0.4 \]
\[\mathcal{B}_{K\pi^0}^{227} = 12.0 \pm 0.7 \pm 0.6 \]
\[\mathcal{A}_{\pi\pi^0}^{227} = -1 \pm 10 \pm 2 \]
\[\mathcal{A}_{K\pi^0}^{227} = 6 \pm 6 \pm 1 \]

\[\mathcal{B}_{\pi\pi^0}^{85} = 5.0 \pm 1.2 \pm 0.5 \]
\[\mathcal{B}_{K\pi^0}^{85} = 12.0 \pm 1.3 \pm 1.1 \]
\[\mathcal{A}_{\pi\pi^0}^{275} = -2 \pm 5 \pm 2 \]
\[\mathcal{A}_{K\pi^0}^{275} = 4 \pm 5 \pm 2 \]

No CP asymmetry in \(B^+ \rightarrow K^+ \pi^0 \)
Select $\tau^+ \tau^-$ events with $\tau^+ \rightarrow e^+ \nu \bar{\nu}$ and $\tau^- \rightarrow (\pi^-, \rho^-) \nu$

Corrections applied to account for inaccuracies in MC
- high energy tail of the energy deposited in the calorimeter
- hadronic split-offs

Compare to efficiencies (double ratio) of std π^0 cuts
Discrepancy is $< 3\%$

For $B_{\pi^0\pi^0}$ Belle reports 6% systematics obtained from

\[
\frac{\eta \rightarrow \pi^0 \pi^0 \pi^0 \text{ data}}{\eta \rightarrow \gamma \gamma \text{ MC}}
\]
$B^+ \rightarrow K^0_S h^+$

K^0_S reconstructed as $K^0_S \rightarrow \pi^+ \pi^-; \text{ cut on } m_{\pi^+ \pi^-} \text{ and decay time; }$

$\delta \epsilon / \epsilon = 2.8\%, 4.4\%$

No B background, approx. 20k events sample

Babar sees evidence (3.5σ) for the decay mode $B^+ \rightarrow K^0_S K^+$

$6B^{227}_{K^0\pi} = 26.0 \pm 1.3 \pm 1.0$

$6B^{85}_{K^0\pi} = 22.0 \pm 1.9 \pm 1.1$

$2A^{227}_{K^0\pi} = -8.7 \pm 4.6 \pm 1.0$

$2A^{152}_{K^0\pi} = 5 \pm 5 \pm 1$

$6B^{227}_{K^0K} = 1.45 \pm 0.50 \pm 0.11$

$6B^{85}_{K^0K} < 3.3$

$2A^{227}_{K^0K} = 15 \pm 34 \pm 3$
Outline

1. Introduction
2. Two charged particles
3. One charged particle
4. No charged particle
5. Conclusion
$B^0 \rightarrow \pi^0\pi^0$

BF expected to be small (color suppr.?) and f.s. contains only γ's
Bkg from continuum and $B^+ \rightarrow \rho^+ (\rightarrow \pi^+\pi^0)\pi^0$

Markus Cristinziani
Charmless twobody B decays
$B^0 \rightarrow \pi^0 \pi^0$

BF expected to be small (color suppr.?) and f.s. contains only γ’s
Bkg from continuum and $B^+ \rightarrow \rho^+ (\rightarrow \pi^+ \pi^0) \pi^0$

- ML fit: $N_{\pi^0\pi^0} = 61 \pm 17$ at 5.0σ
- data, ML fit, $q\bar{q}$ and $\rho\pi^0$

$^6 B_{\pi^0\pi^0}^{227} = 1.17 \pm 0.32 \pm 0.10$

$^{2}A_{\pi^0\pi^0}^{227} = 12 \pm 56 \pm 6$
\[B^0 \rightarrow \pi^0 \pi^0 \]

BF expected to be small (color suppr.?) and f.s. contains only \(\gamma \)'s.

Bkg from continuum and \(B^+ \rightarrow \rho^+ (\rightarrow \pi^+ \pi^0) \pi^0 \)

- ML fit: \(N_{\pi^0 \pi^0} = 61 \pm 17 \) at 5.0\(\sigma \)
- ML fit: \(N_{\pi^0 \pi^0} = 82 \pm 16 \) at 5.8\(\sigma \)

\[6B_{\pi^0 \pi^0}^{2^{277}} = 1.17 \pm 0.32 \pm 0.10 \]
\[6B_{\pi^0 \pi^0}^{2^{275}} = 2.3^{+0.4+0.2}_{-0.5-0.3} \]
\[2A_{\pi^0 \pi^0}^{2^{277}} = 12 \pm 56 \pm 6 \]
\[2A_{\pi^0 \pi^0}^{2^{275}} = 44 \pm 53 \pm 17 \]
$B^0 \rightarrow K^0_S \pi^0$

$b \rightarrow s$ penguin transition; time-dependent CP violation yields $\sin 2\beta_{\text{eff}}$, see talk by Steve Wagner

- use of invariant and missing mass
 - smaller correlation
 - better background suppression (high momentum π^0)
- $\cos \theta^*_B$ variable in ML fit
- $\epsilon = 34\%$ vs 21%
- systematics from $\epsilon(\pi^0)$ and $\epsilon(K^0_S)$

$^6B^{227}_{K^0\pi^0} = 11.4 \pm 0.9 \pm 0.6$

$^6B^{85}_{K^0\pi^0} = 11.7 \pm 2.3 \pm 1.3$
First observation of $B^0 \rightarrow K^0 \bar{K}^0$

Established a $b \rightarrow d\bar{s}s$ penguin transition

Seen by Babar with 4.5σ significance (hep-ex/0408080)

$\mathcal{B}_{K^0\bar{K}^0}^{227} = 1.19 \pm 0.38 \pm 0.13$
Outline

1. Introduction
2. Two charged particles
3. One charged particle
4. No charged particle
5. Conclusion
Summary of branching fractions and asymmetries

Branching Ratio x 10^6

Asymmetry
Isospin analysis

With isospin decomposition we can relate the amplitudes

\[A^{+-}(B^0 \to \pi^+\pi^-), \ A^{+0}(B^+ \to \pi^+\pi^0) \text{ and } A^{00}(B^0 \to \pi^0\pi^0) \]

\[
\frac{1}{\sqrt{2}} A^{+-} + A^{00} = A^{+0} \\
\frac{1}{\sqrt{2}} \bar{A}^{+-} + \bar{A}^{00} = A^{0-} \\
\]

\[\text{arg}(A^{+-}/\bar{A}^{+-}) = 2\Delta\alpha = 2(\alpha - \alpha_{\text{eff}}) \]

- Crucial observation: \(B^+ \to \pi^+\pi^0 \) is pure tree, thus \(|A^{+0}| = |A^{0-}| \)
- Obtain a common base of the triangles with \(\bar{A}^{ij} \equiv e^{i2\gamma} \bar{A}^{ij} \)
- Can determine the penguin pollution \(\Delta\alpha \) and extract \(\alpha \)
First isospin analysis possible in the $\pi\pi$ system

- Full isospin analysis is possible with $C_{\pi^0\pi^0}$ measured
- Input quantities
 - 3 branching fractions
 - 2 asymmetries

\[\Delta \alpha \equiv |\alpha - \alpha_{\text{eff}}| < 35^\circ \text{ at } 90\% \text{ CL} \]
Patterns in $K\pi$ branching fractions

- Ratios $R_x \sim 1$ in the Standard Model
- deviations are sensitive to different corrections to the dominant penguin amplitudes

\[
R_c \equiv \frac{2B^{0+}}{B^{+0}} = 1.00 \pm 0.08
\]
\[
R_n \equiv \frac{B^{+-}}{2B^{00}} = 0.79 \pm 0.08
\]
\[
R \equiv \frac{B^{+-}}{\tau B^0} / \frac{B^{+0}}{\tau B^+} = 0.82 \pm 0.06
\]
\[
R_L \equiv 2 \frac{B^{0+}}{\tau B^+} + \frac{B^{00}}{\tau B^0} = 1.12 \pm 0.07
\]

- Fleischer-Mannel bound (from R) : $\gamma < 75^\circ$ (95% CL)
Patterns of $B \to K\pi$ Asymmetries

Using simple isospin (ignoring P_{EW})

⇒ Can relate asymmetries in charged and neutral $B \to K\pi$ decays

With $\Delta^{\mu\nu} \equiv |A(B \to K^{\mu}\pi^{\nu})|^2 - |A(\bar{B} \to K^{\mu}\pi^{\nu})|^2$

$$\Delta^{0+} + \Delta^{+-} = 2\Delta^{+0} + 2\Delta^{+-}$$

- A^{0+} is small: annihilation and penguin
- A^{00} is not small: color suppressed and penguin

$$A_{th}^{00} = \frac{1}{2} A^{+-} \times B^{+-} - A^{+0} \times B^{+0}$$

$$B^{00} = -0.13 \pm 0.05$$

- In good agreement with the (experimentally difficult) measurement $A_{exp}^{00} = -0.09 \pm 0.14$
Summary

- Results are generally in good agreement, often using different techniques.
- Discovery of direct CP violation in $B^0 \rightarrow K^+\pi^-$ decays confirmed by both experiments.
- $B^0 \rightarrow \pi^0\pi^0$ is large and makes the isospin analysis challenging.
- Hadronic uncertainties “cancel” in the R ratios in $B \rightarrow K\pi$.
- Need to understand radiative corrections in more depth.
- Most of the measurements are statistics limited, thus we benefit from the anticipated duplication rate of the datasets.
Backup
Interpretation of $A_{K\pi}$ within the Standard Model

<table>
<thead>
<tr>
<th>Model</th>
<th>$A_{K\pi}$ (%)</th>
<th>Error(%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQCD</td>
<td>-19</td>
<td></td>
<td>Keum et al., PRD 63, 054008 (2001)</td>
</tr>
<tr>
<td>Charm. Penguins</td>
<td>-8</td>
<td>3</td>
<td>Ciuchini et al., PLB 515, 33 (2001)</td>
</tr>
<tr>
<td>CKMfitter</td>
<td>-10</td>
<td>3.5</td>
<td>Charles et al., hep-ph/0406184</td>
</tr>
<tr>
<td>Data WA</td>
<td>-11</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- Range of predictions [-20%,+5%] covers data
- Theory error $\sim 10\%$
- Consistent result with CKM Fit
- No sign of new physics here
Measurement of α in $B \rightarrow \pi\pi$

- Core of solution at CKM fit value is fairly precise
- 2σ not so good
- Most of the information comes from the $C(\pi^0\pi^0)$ measurement